

White Paper | August 2025

xylem Let's Solve Water

Foreword
Generative AI and the Future of Water Management
1. Defining Artificial Intelligence
2. Why Now? The Convergence of Need and Innovation
3. Mapping GenAl to the EUM Framework
4. Targeted Impact, Strategic Path: Where GenAl Delivers Today—and Where It's Headed
4.1 Digital Diffusion: How AI is Crossing Borders and Reshaping Water Utilities Globally
4.2 Strategic Pathways: Current Use Cases and Emerging Potential 11
4.3 Active Frontiers: Where GenAl Is Already Creating Value 11
4.3.1 Infrastructure Strategy and Performance
4.3.2 Operational Optimization
4.3.3 Customer Experience and Satisfaction
4.3.4 Water Resource Sustainability
4.4 Emerging Potential: Strategic White Space for GenAl 17
4.4.1 Enterprise Resiliency
4.4.2 Regulatory & Reliability Performance
4.4.3 Financial Viability
4.4.4 Stakeholder Understanding and Support 20
4.4.5 Community Sustainability
4.4.6 Workforce Development
4.5 Responsible Use and Governance: A Critical Pillar for Al in Utilities . 22
5. Conclusion: GenAl Is a Utility Tool, Not a Tech Trend
6. Glossary

Foreword

Matthew Pine Chief Executive Officer Xylem

Water utilities are facing unprecedented pressure. Aging infrastructure, rising demand, climate volatility, and chronic underinvestment are converging into a single urgent reality: systems built for stability must now perform under strain. At the same time, expectations are increasing for resilience, transparency, and efficiency. Meeting these demands will require more than incremental improvements. It calls for new tools, fresh thinking, and renewed determination.

One of the most promising tools is Generative AI. While much of the public conversation has centered on novelty, the real opportunity for utilities is more practical: to use GenAI as an asset that helps teams work more intelligently, make faster decisions, and preserve institutional knowledge at scale. This is not a distant vision. Early use cases are already emerging in cities around the world. These applications are currently focused and limited, but they are also encouraging.

This is not a time for hype. GenAl is not a magic fix or a substitute for human expertise. However, when used effectively, it can enhance that expertise, enabling utilities to navigate complexity with greater clarity and speed. The question is no longer whether the technology can help, but how we can create the right conditions to explore, innovate, and drive impact responsibly.

Achieving this requires institutional readiness. Clean and connected data, clear ownership, and strong governance are essential. Processes must be in place that allow human and machine intelligence to work together. Without this foundation, even the most promising pilots will falter. With it, GenAl can evolve from a tool of experimentation to a core part of how utilities plan, operate, and serve.

This paper outlines a pragmatic path forward: address real friction points, design with scalability in mind, and focus on meaningful outcomes. The value of GenAl lies not in novelty but in reliability, scalability, and measurable results. It is one of several strategic levers that can help utilities bridge the growing gap between expectations and capabilities.

This moment does not require certainty, but it does demand leadership and a willingness to explore. Let's lead with purpose and make this technology work for the challenges that truly matter.

Generative Al and the Future of Water Management

The water sector stands at a critical inflection point, shaped by converging forces that strain the status quo. Decades-old infrastructure, an aging and retiring workforce, tightening regulatory standards, and intensifying climate impacts are collectively accelerating the urgency for smarter, more adaptive strategies.

Against this backdrop, generative artificial intelligence (GenAI) has emerged—not just as a tool for digitization but also as a catalyst for reimagining how utilities manage their workforce, assets, and information. GenAl technologies analyze vast datasets to autonomously produce contextually relevant content, opening new frontiers in machine-assisted problem-solving. Unlike traditional automation or analytics, GenAl can tailor decision-ready outputs—such as summaries, recommendations, and simulations—to meet operational, regulatory, and environmental constraints.

This white paper aims to highlight the transformative potential of GenAl across the water sector, showcasing real-world applications that are already enhancing key performance metrics for utilities. By aligning these innovations with the well-established Effective Utility Management (EUM) framework, utility leaders and teams can better understand the road map toward greater adoption, balancing technological ambitions with operational realities.

1

Defining Artificial Intelligence

Within this rapidly shifting environment, artificial intelligence (AI) has emerged as a foundational enabler of innovation. However, it is essential to recognize that not all AI systems are the same. There are two distinct categories: machine learning (ML) & advanced analytics and generative AI (GenAI). Each category offers unique capabilities with different implications for utility operations.

As utilities confront mounting operational complexity, both ML & advanced analytics and GenAl offer critical yet distinct pathways for innovation. ML & advanced analytics delivers precision and efficiency for well-bounded tasks, while GenAl introduces a new dimension of intelligence—one that navigates

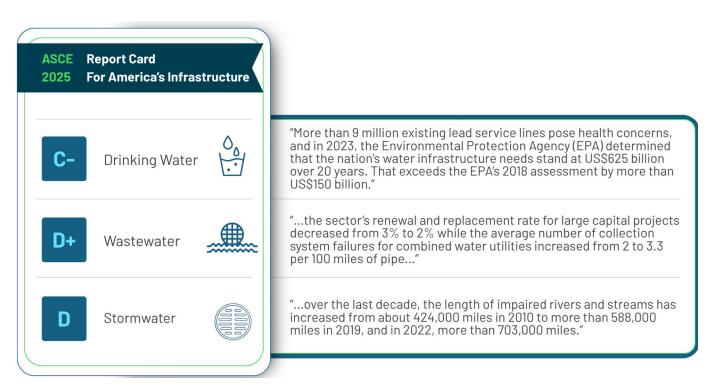
ambiguity, scales human expertise, and unlocks latent value in unstructured data.

Recognizing the differences between these technologies—and how they can complement each other—is essential for utility leaders seeking to modernize their decision-making processes.

When strategically deployed together, ML & advanced analytics and GenAl represent a continuum of digital capabilities that can transform water management, leading to a more resilient, responsive, and resource-optimized future.

Machine Learning & Advanced Analytics is engineered to perform specific tasks, such as leak detection, demand forecasting, and asset failure prediction. It uses rule-based or trained models on structured datasets. These applications are often deterministic and narrowly scoped, offering measurable value through automation and pattern recognition within predefined parameters.

Generative AI extends the capabilities of traditional AI by leveraging large datasets and advanced models to produce original, contextually relevant content. This content includes tasks such as summarizing technical reports, drafting regulatory filings, generating maintenance recommendations, and simulating scenarios—all tailored to meet operational, regulatory, and environmental constraints. GenAI is probabilistic and adaptive, making it particularly well suited for environments with unstructured data and complex decision-making processes.


Why Now? The Convergence of Need and Innovation

This technological leap arrives precisely when the water sector is facing unprecedented challenges. According to the American Society of Civil Engineers' 2025 Report Card, the U.S. will require a US\$625 billion investment in drinking water infrastructure over the next two decades. Compounding this issue, workforce demographics signal an impending knowledge exodus, as more than 30% of water professionals are

projected to retire by 2030, while only 10% of the workforce is under the age of 24. These structural pressures—coupled with climate-induced operational volatility and persistent financial strain—are pushing utilities to treat enhanced efficiencies not as aspirational targets but as essential operational imperatives.

Exhibit 1

U.S. Infrastructure Grade, American Society of Civil Engineers

Source: American Society of Civil Engineers, Bluefield Research

GenAl's capabilities are advancing at an unprecedented pace, transforming tasks that once demanded specialized expertise or resource-intensive workflows into streamlined, automated processes across all sectors. The water sector is no exception; due to its complexity, breadth, and heavy reliance on legacy systems, the water industry stands to benefit significantly from these advancements.

While today's GenAl solutions, even in their infancy, are capable of drafting compliance documents and extracting operational insights, tomorrow's applications hold the promise of fundamentally reshaping the industry—from autonomous infrastructure management systems that predict and prevent failures before they occur to integrated decision platforms that optimize resource allocation in real time across entire watersheds.

Exhibit 2 Global Private Investment in GenAl 35 +3,197% 30 Increase 25 US\$ (Billions) 20 15 10 5 0 2024 2019 2020 2021 2022 2023

Note: This data is expressed in constant 2021 US\$. Inflation adjustment is based on the U.S. Consumer Price Index (CPI) Source: Quid Monitor via Al Index Report (2025); U.S. Bureau of Labor Statistics (2025), Bluefield Research

At a high level, tech juggernauts such as Amazon and Microsoft are developing workflow solutions specifically for utilities. These solutions combine ML and large language models (LLMs) to generate faster and more accurate assessments and predictions in the field that can be leveraged across the organization to enhance overall efficiency. While many of these deployments are still in the infancy or ideation phases, some industry pioneers (such as DC Water, Hampton Roads Sanitation

District, and Anglian Water) are already demonstrating the value of GenAl. Their implementations span a range of functions, from customer engagement to asset management optimization, delivering measurable outcomes such as reduced operational costs, enhanced staff productivity, and stronger community relationships. These early success stories are fundamentally reshaping industry perspectives on operational possibilities and strategic horizons.

Mapping GenAl to the EUM Framework

Exhibit 3

10 Attributes of Effective Utility Management

Source: U.S. Environmental Protection Agency, Bluefield Research

The EUM framework, developed in 2008 by the U.S. Environmental Protection Agency (EPA) and leaders in the water sector, remains the most widely adopted utility management model in the U.S. Designed by utility leaders for utility leaders, this framework serves as an operating system for sustainable performance, grounded in 10 core attributes and five management keys that

collectively support long-term success.

Today's market opportunities for GenAl, when mapped to the EUM landscape, can be understood in active frontiers and emerging potential.

EUM enables utilities to benchmark their current state, define priorities, and align strategies with evolving challenges across its 10 key attributes. The model's focus on leadership, operations,

infrastructure, and stakeholder engagement makes it compatible with the capabilities of GenAl.

By embedding GenAl within the EUM framework, utilities can activate latent value in their data systems, break down functional silos, and leverage insights across teams and time frames. In this way, EUM not only complements GenAl but also provides a solid foundation for its purposeful, sustainable, and scalable deployment.

Generative AI remains in its early stages of adoption in utility operations and planning. Rather than serving as a wholesale replacement for existing systems, it offers targeted, high-value solutions that address specific challenges. As a result, today's market opportunities for GenAI, when mapped to the EUM landscape for utilities, can be understood in two main categories:

Active Frontiers, in which GenAl is beginning to demonstrate tangible returns at small scale by enhancing operational consistency, improving service responsiveness, and unlocking financial efficiencies.

Emerging Potential, in which its application is even more nascent, and the strategic fit is on the horizon. Areas like public trust, training, and sustainability strategy that will benefit as digital maturity and governance evolve.

This framing helps utilities prioritize their efforts by starting with areas that demonstrate momentum and proof points, while also seeding innovation in sectors poised for near-term gains.

Active Frontiers:

 Infrastructure Strategy & Performance:

Manages asset costs effectively over the long term, ensuring they align with reliability goals and meet community needs.

- Operational Optimization:
 Continuously improves operations
 by utilizing data, technology, and efficient resource management.
- Customer Experience & Satisfaction: Provides reliable, affordable service that meets customer needs and expectations.
- Water Resource Sustainability: Ensures long-term water availability and quality through integrated watershed management and reuse strategies.

Emerging Potential:

- Enterprise Resilience: Identifies and manages a wide range of risks to ensure continuity and responsiveness during disruptions.
- Regulatory & Reliability
 Performance:
 Delivers water and recovered
 resources that meet or exceed
 regulatory and customer-defined
 standards.
- Financial Viability:
 Maintains stable, predictable
 finances through comprehensive
 life cycle planning, sound rate
 structures, and effective revenue
 strategies.
- Stakeholder Understanding & Support: Builds trust and support from customers, regulators, and the community through engagement and transparency.
- Community Sustainability:
 Aligns utility activities with the broader economic, environmental, and social goals of the community.
- Workforce Development:
 Attracts, retains, and develops a skilled, motivated workforce that possesses strong institutional knowledge.

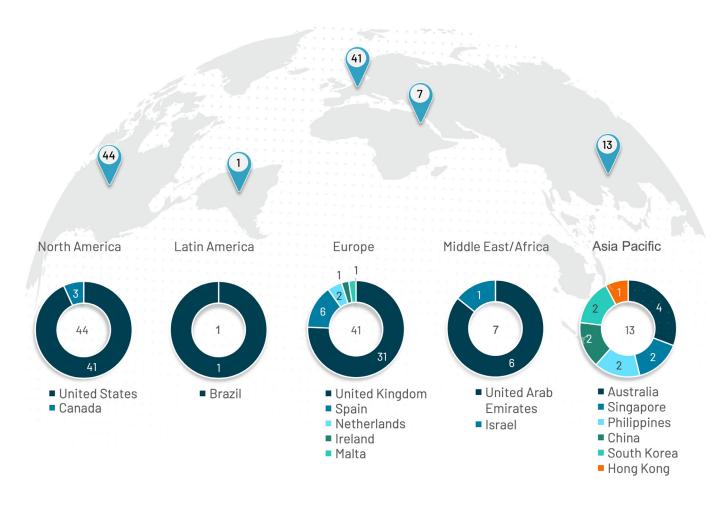
Targeted Impact, Strategic Path: Where GenAl Delivers Today—and Where It's Headed

As adoption spreads across geographies—ranging from early movers in the U.S. to digitally ambitious utilities in Asia Pacific, Europe, and the Middle East—operational needs, rather than geographic boundaries, drive the relevance of GenAl. Active deployments are beginning to demonstrate measurable gains in cost control, service quality, workforce productivity, and infrastructure

planning, with standout examples from Hampton Roads Sanitation District (Virginia), Anglian Water (United Kingdom), DC Water (Washington, D.C.) and Las Vegas Valley Water District (Nevada). These trends define a clear strategic path: Build momentum in proven areas while laying the digital foundation for broader, system-wide transformation.

4.1 Digital Diffusion: How Al is Crossing Borders and Reshaping Water Utilities Globally

Al in the water sector is unmistakably borderless. While its adoption often begins in digitally mature markets, it is increasingly expanding across geographies as utilities confront shared operational challenges. According to an analysis by Bluefield Research, there are 107 documented utility-led Al initiatives spanning five regions. These examples were compiled through a systematic review of utility disclosures, vendor case studies, news sources, and Bluefield's proprietary research, providing a representative, albeit not exhaustive, overview of global activity.


The following list highlights key regional insights:

- The Asia Pacific region leads global project diversity, with 13 initiatives spanning Australia (4), Singapore (2), China (2), the Philippines (2), and other locations. This trend demonstrates a healthy appetite for digital transformation across both developed and emerging markets.
- The U.S. maintains the highest level of single-country adoption, underscoring North America's role as a launchpad for commercial Al vendors and early utility experimentation.

 Europe and the Middle East show targeted deployments, particularly in the U.K. and Israel. In these regions, national digital strategies and water stress issues are driving innovations in utility services that align with broader policy frameworks.

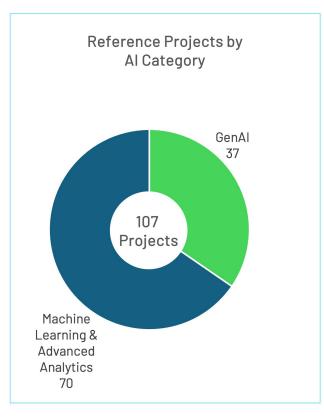
Exhibit 4

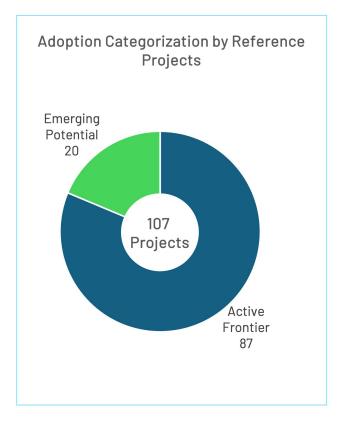
Tracking Al Adoption Across the Global Water Landscape: 107 Identified Projects Across Five Regions

Note: These projects have been identified as examples of artificial intelligence applied to the water sector, globally. It is not exhaustive but is demonstrative of the expanding geographic breadth of its usage Source: Bluefield Research

While the global map illustrates a sense of dispersion, the more critical narrative lies in how utilities are applying Al. Industry leaders are not deploying these technologies just for novelty; they are adopting them to address recurring operational challenges, such as leak detection, process optimization, and customer

service automation. This signals that GenAl and ML & advanced analytics are not merely technological options but rather strategic responses to the evolving pressures of utility management, which include aging infrastructure, workforce transitions, climate impacts, and regulatory requirements.


4.2 Strategic Pathways: Current Use Cases and Emerging Potential


The role of Gen Al in utility operations and planning is still changing quickly, with its current impact defined by targeted, high-value use cases rather than sweeping systemic change. This approach enables utilities to make

informed investment decisions—capitalizing on proven applications that deliver results today, while strategically advancing innovation in areas with strong near-term promise.

Exhibit 5

Municipal Utility Reference Projects Leveraging Al

Source: Bluefield Research

4.3 Active Frontiers: Where GenAl Is Already Creating Value

Utilities are moving from pilots to production. The initial wave of GenAl deployments is no longer just theoretical—it is now delivering significant operational, financial, and customer-facing value. Framed by the EUM model, these initiatives outline

a clear strategy: Begin by addressing the most pressing pain points, scale up where the benefits compound, and govern across functions to ensure lasting impact.

Time

Source: Bluefield Research

4.3.1 Infrastructure Strategy and Performance

As utilities are inundated with operational data, GenAl is transforming this information into strategic insights by connecting infrastructure planning with behavioral outcomes and longterm goals.

broader IMPACT

Converts raw data into action, enables equitable planning, and bridges the gap between infrastructure management and public engagement.

- Organizations such as SAWS, Yorkshire Water, and LVVWD leverage GenAl to integrate diverse datasets for risk-based capital planning and pipeline renewal strategies.
- The city of Zaragoza and LVVWD are deploying customer-facing conservation platforms powered by GenAI. These platforms feature tools for non-revenue water alerts and gamified household benchmarking.
- San Jose Water uses Al tools to track environmental and equity metrics, ensuring that its investments align with community expectations.

4.3.2 Operational Optimization

Utilities currently face a growing funding gap of US\$690 billion for wastewater and stormwater by 2044, according to the American Society of Civil Engineers. Currently, only 30% of the required capital needs are being met. GenAl is emerging as a valuable cost-control lever, enabling improved operations and maintenance (0&M) management, deferred capital expenditures, and more reliable budgeting.

broader IMPACT

Enhances process reliability, shortens learning curves, and establishes scalable frameworks for multisite operations.

For example, the Hampton Roads Sanitation District (HRSD) utilizes GenAl to assist operators in determining the optimal timing for aeration and pump schedules. This approach reduces variability and improves plant stability, which is particularly important, given that one-third of its workforce has less than five years of experience.

Similarly, Yorkshire Water has developed a knowledge engine that unifies documentation, process controls, and asset data, allowing operators to access critical information precisely when needed.

The city of Grand Rapids has deployed Al to monitor pump behavior in real time, flagging anomalies before failures occur.

Case Study: Hampton Roads Sanitation District (HRSD) Process Optimization

INITIATING SMALL-SCALE AI DEPLOYMENT AND BUILDING OUTWARD

The Hampton Roads Sanitation District (HRSD) is piloting a GenAl-driven platform at one of its 14 wastewater treatment plants to optimize operations such as power consumption and chemical dosing. In collaboration with three other utilities—DC Water, Clean Water Services, and Metro Water Recovery—HRSD is contributing to the development of a unified, agentic Al system tailored to utility workflows.

- **Initial Focus:** Achieve incremental process optimization with immediate cost savings.
- Longer-Term Goals: Automate and prioritize workforce tasks.
- **Strategic Aim:** Develop a nimble, modifiable, and expandable AI solution that can fit within any of HRSD's 14 plants, each having unique configurations and challenges.
- **Industry Impact:** HRSD sees itself as a key reference case for sector-wide adoption of AI.

4.3.3 Customer Experience and Satisfaction

As customer service expectations rise, many utilities are struggling to staff their customer service teams effectively. GenAl offers a solution that facilitates broader customer engagement, improves response times, enhances accessibility, and builds customer trust—all without adding headcount.

For example, DC Water has implemented a multilingual chatbot trained on 40+ service topics. This chatbot provides 24/7 responses to approximately 700,000 residents, significantly reducing the workload for the company's call center.

Similarly, Maynilad Water in the Philippines uses Al and satellite analytics from Asterra to proactively detect leaks and service interruptions. This approach increases transparency and improves service reliability.

broader IMPACT

Boosts public trust, reduces resolution times, and enhances accessibility for diverse customer segments.

Case Study: The Evolution of Al Implementation at DC Water

TRANSFORMING CUSTOMER ENGAGEMENT AND OPTIMIZING OFFICE PRODUCTIVITY

DC Water is deploying GenAl to reshape both its customer service and internal operations. Serving over 2.5 million people, the utility is pioneering Al implementation on two strategic fronts: frontline training and engagement and office efficiency.

- AI-Enabled Modules: The adoption of Microsoft Copilot has doubled in one year, with over 70 active users reporting significant productivity gains. A 95% survey response rate shows strong staff support, contributing to improved morale and productivity.
- **Customer Care Experience:** Launching a multilingual GenAl chatbot trained on 40 different topics on the company's website, capable of answering personalized consumption and billing queries on a 24/7/365 basis. Part of a four-phase road map progressing from text interactions to voice interactions.
- Shared Service Application: Multi-phase application of GenAl that targets the procurement office in support of the entire organization. Phase 1 streamlines and automates common procurement inquiries using utility procurement protocols. Phase 2 will employ an Al-enabled software agent to extract and summarize specific parts of the vendor process for evaluation based on semantic search of key phrases to save time and ensure completeness.

4.3.4 Water Resource Sustainability

GenAl Role: Integrated watershed modeling, adaptive reuse planning, and dynamic allocation.

Water availability, climate resilience, and resource optimization are deeply entwined. GenAl offers a significant leap forward in helping utilities navigate these complexities, integrating hydrological, regulatory, and operational data into forward-looking strategies that protect

broader IMPACT

By merging meteorological forecasts, land use changes, sensor inputs, and regulatory constraints, GenAl can dynamically recommend modifications to pumping schedules, reservoir drawdowns, or wastewater reuse levels.

long-term supply while enhancing environmental stewardship.

The Las Vegas Valley Water District (LVVWD) is implementing a gamified customer portal that uses Al to drive household-level conservation behaviors based on real-time advanced metering infrastructure (AMI) data and business analytics. Although still in its early stages, this program signals a growing shift toward Al-enabled behavioral nudges and improved demand-side forecasting.

HRSD's multi-plant pilot also aims to optimize energy and chemical use. These actions not only lead to cost savings but also reduce environmental load and extend water reuse cycles.

Case Study: Las Vegas Valley Water District

GAMIFYING WATER CONSERVATION THROUGH ALINTEGRATION

To tackle persistent water scarcity, the LVVWD is building on its 450,000 smart meter (AMI) deployments with an innovative, Al-driven conservation program. This initiative aims to engage customers via a gamified neighborhood water use platform powered by real-time data analytics.

- **Next-Gen Conservation:** Planned gamification program leverages AMI data, customer addresses, and usage patterns to promote behavioral change.
- **Cross-Functional Al Team:** Internal Al group identifies data opportunities and technology options, funneling insights to a strategic steering committee.
- **Agile Governance:** Al policy remains in "draft" form to keep pace with rapid innovations while ensuring proper oversight on ethics, procurement, and cybersecurity.
- **Sector Signal:** LVVWD's approach illustrates how utilities can effectively integrate behavioral nudges with data systems to achieve long-term sustainability goals.

4.4 Emerging Potential: Strategic White Space for GenAl

While Generative AI is already delivering results across six core attributes of utility performance, three areas—Enterprise Resiliency, Regulatory & Reliability Performance, and Stakeholder Understanding & Support—remain underdeveloped but hold great potential. These domains are characterized by complexity, crossfunctional dependencies, and high stakes, making them ideal for GenAI's

strengths in contextual reasoning, real-time guidance, and personalized communication.

The opportunity is clear: As digital foundations mature, utilities can deploy GenAl to extend value beyond operations and finance, expanding into areas such as public trust, regulatory compliance, and crisis response.

Exhibit 7

Growth Areas for GenAl in Water

Entry Point / Attribute	GenAl Role / Opportunity	Leading Signals	Strategic Leverage	EUM Impacts
Cost Control	Operational decision support	HRSD (0&M forecasting)	Cost containment, Budget resilience	Financial Viability; Infrastructure Strategy & Performance
Process Optimization	Embedded guidance, institutional memory	Arcadis-SAWS platform integration	Institutional knowledge capture, Risk mitigation	Operational Optimization; Workforce Development
Customer Service	• 24/7 multilingual chat, reduced call load	• DC Water (chatbot), LVVWD (gamification)	Trust-building, Equitable service access	Customer Experience & Satisfaction; Stakeholder Support
Admin Productivity	Copilot-assisted workflows	• City of Houston (Microsoft 365 Copilot pilot)	Task automation, Staff capacity enhancement	Workforce Development
Strategic Planning	Capital risk modeling and integration	GLWA, Toledo (Al alerts, risk-based planning)	Scenario forecasting, Resilient investment strategy	Infrastructure Strategy & Performance; Regulatory & Reliability
Water Conservation	Gamification and feedback tools	LVVWD (smart meters, customer portals)	Customer engagement, Demand management	Water Resource Sustainability; Community Sustainability
Enterprise Resiliency	Scenario modeling, recovery protocols	Northern Ireland Water (early warning systems)	Disaster readiness, Continuity of operations	Infrastructure Strategy & Performance; Operational Resilience
Regulatory & Reliability	Automated summaries, alerting, compliance logs	GLWA, Toledo (compliance flagging)	Reduced regulatory burden, Proactive reporting	Regulatory & Reliability Performance
Stakeholder Understanding	Tailored communications, multilingual content	DC Water (chatbot), LVVWD (outreach)	Trust-building, Equitable service access	Stakeholder Understanding & Support
Workforce Development	Digital training assistants, institutional knowledge codification, Al coaching	WEF (learning platforms), NYC DEP (digital twin training)	Upskilling, Retention, Succession planning	Workforce Development; Operational Optimization

Source: Bluefield Research

4.4.1 Enterprise Resiliency

GenAl Role: Real-time continuity guidance, shift-level instructions, and scenario modeling.

Utilities face growing disruptions—from climate events to cyber threats. GenAl can convert static contingency plans into dynamic tools for effective response and continuity. By transforming static playbooks into real-time, scenario-aware guidance tools, GenAl enables frontline teams to access critical information during disruptions.

Signal

Northern Ireland Water's early warning system for energy reliability, while not fully GenAl-powered, offers a data backbone for adaptive response protocols and predictive alerts.

Opportunity

Embedding GenAl into ICS/SCADA environments could guide operators through step-by-step recovery, escalate communications, and even simulate the propagation of outages in real time.

4.4.2 Regulatory & Reliability Performance

GenAl Role: Automated compliance tracking, draft generation, multilingual alerts, and performance analytics.

Regulatory compliance is one of the most resource-intensive and risk-sensitive aspects of utility operations. As requirements expand in scope and complexity—encompassing water quality, cybersecurity, affordability, and equity—

utilities are burdened by reporting obligations and audit risks.

GenAl can alleviate this burden by automating report generation, tracking permit deadlines, summarizing performance data, and generating plain-language compliance updates.

Signal

The Great Lakes Water Authority and the city of Toledo are using GenAl-style automation for risk flagging, predrafting reports, and providing multilingual alerts, laying a foundation for broader adoption.

Opportunity

Generating draft versions of National Pollutant Discharge Elimination System (NPDES) permit reports, annual water quality reports, or customer-facing boil water notices—complete with audit-ready traceability—can free up staff time while reducing risk exposure.

How to Spot a Good AI Use Case

A quick screening guide for utility leaders:

- DATA RICH Contains sufficient, high-quality data for effective Al modeling.
- COMPLEX PROBLEM Involves variables or complexities that straightforward rules can't address.
- HIGH IMPACT Delivers significant operational or customer value when a solution is found.
- RECURRING Occurs frequently enough to justify the investment in addressing it.
- HUMAN FRIENDLY Supports and enhances operator judgment rather than replacing it.

4.4.3 Financial Viability

As utilities face intensifying financial constraints, aging infrastructure, and climate-related stresses, GenAl is emerging as a critical lever for improving operational efficiency, enhancing capital planning, and ensuring long-term economic resilience.

broader IMPACT

Strengthens affordability, supports rate planning, and enables defensible investment decisions across asset portfolios.

For example, HRSD has optimized chemical and energy usage by utilizing GenAl connected to historical and process data, delivering early reductions in 0&M costs and improved budget forecasting.

Similarly, the San Antonio Water System (SAWS) integrates data from its computerized maintenance management system (CMMS), supervisory control and data acquisition (SCADA) systems, and geographic information systems (GIS) through a GenAl-enabled platform to inform long-term reinvestment and capital planning.

4.4.4 Stakeholder Understanding and Support

GenAl Role: Personalized FAQs, equity explainers, digital twin interfaces, and real-time public dashboards.

Public trust is a strategic asset. As utilities face growing demands for transparency and equitable service, they must communicate complex information in formats that are accessible and tailored to specific audiences—without expanding communications staff.

GenAl can generate customized content (FAQs, infographics, decision summaries) for ratepayers, regulators, and advocacy groups—bridging the gap between technical complexity and community understanding.

Signal

DC Water's chatbot and LVVWD's gamified customer engagement pilot offer early glimpses of personalized, scalable outreach models.

Opportunity

GenAl could power dynamic "digital twins" or interactive dashboards that explain rate changes, water quality metrics, or infrastructure investments in plain language.

ENHANCING COMPLIANCE AND OPERATIONS WITH VISUAL AI TOOLS

Anglian Water, serving nearly 7 million people in the East Anglian Region of the UK, is advancing its regulatory and operational performance through targeted applications of Al and data analytics. The utility's strategy centers on leveraging historical and new data to enhance resilience and ensure compliance in a tightly regulated market.

- Strategic Focus: Al deployment targets three priorities: leveraging historical data, improving processes, and generating new streams of operational data.
- Visual GenAl in Action: The utility is in the process of field trialing and rolling out video-enabled Al to identify safety issues at plant sites and generate automated reports, targeted at aiding future regulatory and operational tracking purposes.
- National Leadership: As the leading utility behind the U.K.'s Ofwat-funded Safe Smart Systems program, Anglian is shaping long-term Al resilience strategies for the sector.
- Realistic Al Vision: Even implementing partial Al-assisted operations could enable 24/7 support, freeing staff to focus on higher-value tasks within five years.

4.4.5 Community Sustainability

GenAl Role: Localized policy modeling, equity assessment, and program codesign.

As utilities face increasing expectations to deliver equitable, environmentally conscious services, many community-focused initiatives remain fragmented or reactive. GenAl offers an integrative solution, enabling utilities to analyze unstructured community data, simulate outcomes, and collaboratively design programs that address local needs and requirements.

Signal

Zaragoza and San Jose Water are leveraging GenAl to integrate equity metrics and non-revenue water data into localized performance dashboards. These tools enhance planning transparency, allowing decision-makers to align infrastructure investments with community goals. Similarly, Anglian Water is piloting video-based GenAl tools for automated safety diagnostics and environmental assessments, visually communicating localized risks and fostering public engagement.

Opportunity

GenAl can simulate the potential impacts of proposed infrastructure projects or rate adjustments on different neighborhoods by using demographic overlays and real-time data. Additionally, it can also produce "equity explainers" or dynamic digital twins—interactive tools that help stakeholders visualize how capital investments translate into localized environmental and social outcomes.

4,4.6 Workforce Development

As utilities brace for a demographic shift—with over 30% of the U.S. water workforce expected to retire by 2030—it is critical not only to retain knowledge but also to rapidly upskill a younger, less experienced cohort. GenAl is emerging as a frontline tool for ensuring institutional continuity and empowering employees.

broader IMPACT

Builds digital literacy, reduces dependence on static procedures, and cultivates a more resilient, high-performing workforce that is aligned with long-term operational goals.

Signal

DC Water has deployed Microsoft Copilot licenses for 65 administrative staff members, assisting with tasks such as scheduling, writing, and data analysis. Staff survey results show an average time savings of 10 minutes per task, with 95% user approval, signaling early gains in productivity and morale. Meanwhile, HRSD's GenAl assistant serves as a digital mentor for operators, offering real-time guidance and bridging the knowledge gap caused by workforce turnover.

Opportunity

As frontline expertise diminishes, GenAl can help by embedding dynamic standard operating procedures, automating rote tasks, and providing real-time troubleshooting—all in plain language. These tools can accelerate onboarding, reduce the burden on supervisors, and empower newer employees to make confident, informed decisions without overreliance on senior staff.

4.5 Responsible Use and Governance: A Critical Pillar for Al in Utilities

Artificial intelligence represents more than its tactical application as a technological tool; it is emerging as a strategic capability that also depends heavily on trust, transparency, and responsible use. As utilities deploy Al to manage critical water resources, ensure public health, and optimize infrastructure assets and operations, governance at local, national, and regional levels will be crucial not only for maintaining compliance but also for gaining a competitive advantage.

At the forefront of this change, the EU Artificial Intelligence Act, adopted in 2024, explicitly classifies AI systems used in water utilities for safety-critical functions (e.g., leak detection, system optimization) as high-risk systems. Consequently, these systems are required to have documented risk

management processes, transparency, and human oversight. For utilities in the EU and for global vendors serving them, compliance is not optional.

However, governance extends beyond mere regulation. Maintaining public trust in water systems is essential, particularly as utilities integrate sensitive data, including customer billing information, consumption patterns, leak detection systems, and environmental monitoring data. The concept of responsible Al governance is shifting from being an aspirational goal to an essential requirement. Utilities that regard governance as a core capability, rather than an afterthought, will be best positioned to deploy Al strategically, sustainably, and at scale.

Key Dimensions of Responsible Al Governance for Utilities:

- TRANSPARENCY AND EXPLAINABILITY All systems should produce understandable, auditable outputs—critical for ensuring operational safety and compliance with regulatory requirements.
- DATA PRIVACY AND SECURITY It is crucial to adhere to the General Data Protection Regulation (GDPR) and local data protection regulations to protect customer and operational data, especially as utilities expand their use of remote monitoring and customer-facing Al services.
- HUMAN OVERSIGHT Even sophisticated Al systems must allow for human review and the ability to override decisions, particularly in safety-critical operational contexts.
- RISK MANAGEMENT AND ACCOUNTABILITY It is essential to document decision-making logic, maintain logs, and clearly define roles and responsibilities.
- EQUITY AND INCLUSION Design Al applications to avoid reinforcing service inequities or bias, especially when used for rate setting, customer outreach, or conservation programs.

Conclusion: GenAl Is a Utility Tool, Not a Tech Trend

Generative AI is transforming how leading utilities plan, operate, and engage, with measurable improvements in cost control, staff productivity, and customer responsiveness. However, its ultimate value may lie ahead, in areas that have yet to receive sufficient digital investment, such as resiliency, regulatory performance, and public trust.

By aligning future GenAl pilots with these high-impact yet untapped capabilities, utilities can unlock the next wave of performance gains and establish a digital foundation for a more resilient, responsive, and trustworthy sector.

Utilities aren't technology companies, and they don't need to be. However, they are system organizations responsible for delivering essential services under growing operational, financial, and environmental pressures

Now is the time to lead—not just react.

Start with a Defined Problem

Prioritize high-pain, highimpact use cases (e.g., permitting delays, risk forecasting, reporting gaps).

Engage the Workforce Early

Build trust by involving frontline staff in how tools are scoped, deployed, and measured.

Establish Data Foundations

Ensure that you have clean, connected data as a baseline. Invest in system integration and governance protocols to ensure seamless operations.

Use the EUM Framework

Anchor pilots in performance metrics that leadership already tracks, transforming innovation into measurable ROI.

Build Cross-Functional Governance

Form steering groups that include members from key departments, such as information technology, operations, human resources, and customer service.

Design for Replicability

Think beyond the pilot phase. Successful implementations should be scalable across different systems and departments.

(6)Glossary

ΑI Artificial Intelligence

AMI Advanced Metering Infrastructure; an integrated network

of metering hardware that enables two-way communication between the centralized utility and individual end points of

measurement.

agentic Al Capable of achieving outcomes independently; possessing

adaptive capabilities.

CCTV Closed-circuit television.

community of A dedicated utility group formed for a shared purpose based

on expertise and interest.

condition A detailed assessment of the current state of a utility asset,

assessment

practice

usually made for future planning and investment. report

early warning A system designed to provide timely warnings about system potential problems or hazards that could impact a utility's

infrastructure or services.

GenAl Generative Artificial Intelligence; encompasses technologies

> capable of analyzing and discerning patterns in extensive training datasets and autonomously constructing material that shares comparable characteristics to this training input.

LLM Large Language Model

ML Machine Learning


ML & advanced Al tools engineered to perform specific tasks, such as leak analytics

detection, demand forecasting, or asset failure prediction, using rule-based or trained models on structured datasets.

Ofwat The Water Services Regulation Authority, or Ofwat, is the

> body responsible for regulating the economic aspects of the privatized water and sewerage industry in England and Wales.

0&M Operations & Maintenance

Bluefield Research

Boston Barcelona Chicago Paris San Francisco

North America: +1 617 910 2540 Europe: +34 932 716 546

waterexperts@bluefieldresearch.com www.bluefieldresearch.com

Bluefield Research is a leading provider of global water market data and insights. We advance strategies for utilities, companies, and organizations addressing the challenges and opportunities in water.

Bluefield delivers robust, in-depth data and analysis not provided anywhere else in the water sector.

Xylem

Xylem Inc. 301 Water Street SE, Suite 200 Washington, DC 20003 United States

www.xylem.com

Xylem is a leading global water solutions company dedicated to advancing sustainable impact and empowering the people who make water work every day. From moving, treating, and measuring water to optimizing and maintaining water systems, Xylem collaborates with customers to solve their most critical challenges. Together, we are building a more water-secure world.

